GCE

Biology

Advanced GCE

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& \& Expected Answers \& Marks \& Additional Guidance

\hline 1 \& (b) \& 2

3 \& \begin{tabular}{l}
idea that ATP produced / energy released;

idea that recycles NAD / NAD can be used again ;

allows, glycolysis / description of glycolysis , to take place / to continue ;

 \& 1 max \&

IGNORE ref to specific metabolic reactions other than glycolysis (mp 3)

IGNORE ref to respiration without oxygen

1 DO NOT CREDIT this mark point with any ref to energy, generated / produced / made [eg energy made in the form of ATP $=0$ ATP (energy) is produced $=0$]

2 (ACCEPT 'reoxidises red NAD'

(as implies recycling)

CREDIT NADH / NADH ${ }^{+}$/ NADH ${ }_{2}$ for red NAD DO NOT CREDIT 'oxidises red NAD' without further qualification

3 If glycolysis used as a term, the spelling of 'glyco' must be correct.
\end{tabular}

\hline \& \& \& TOTAL \& 4 \&

\hline
\end{tabular}

Question				Expected Answers	Marks	Additional Guidance
2	(a)	(i)	1	structure A / Schwann cell / it , produces myelin ;		1 Needs the idea of production rather than simply stating 'it is a myelin sheath'
			2	(electrical) insulation / insulates;		2 CREDIT insulate or derived term. IGNORE impermeable DO NOT CREDIT idea of thermal insulation
			3	prevents movement of ions, into / out of, neurone / axon or prevents depolarisation ;		3 CREDIT 'across membrane' instead of , in / out, of axon IGNORE ion exchange IGNORE impermeable DO NOT CREDIT ions moving, into / out of , membrane DO NOT CREDIT movement of ions without qualification
			4	speeds up , conduction / transmission / passage , of , impulse / action potential ;		4 Statement must be comparative eg faster DO NOT CREDIT message / signal / wave of depolarisation
			5	action potentials / local circuits / depolarisation / only occur at , gaps / nodes (of Ranvier) ;		5 ACCEPT longer local circuits ACCEPT 'local currents' instead of local circuits
			6	saltatory conduction / described;	3 max	6 ऐeg - impulse jumps from, node to node / gap to gap Note: ‘saltatory conduction' = 2 QWC terms
				- technical terms used appropriately with correct spelling ;	1	Correct use and spelling of 3 terms from: myelin, depolarisation (or other derived term), impulse, conduct (or other derived term), action potential, local circuit, node, saltatory
						You should use the GREEN DOT to identify the QWC terms that you are crediting.
						Please insert a QWC symbol next to the PENCIL ICON, followed by a tick (\checkmark) if QWC has been awarded or a cross (x) if QWC has not been awarded

Question			Expected Answers	Marks	Additional Guidance
2	(a)	(ii)	exocytosis ;	1	Mark the first answer. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = $\mathbf{0}$ marks IGNORE bulk transport
2	(a)	(iii)	diffusion ;	1	Mark the first answer. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = $\mathbf{0}$ marks DO NOT CREDIT facilitated diffusion
2	(a)	(iv)	idea that only the presynaptic neurone , produces / releases / contains , acetylcholine / ACh / (neuro)transmitter ; 2 only the presynaptic membrane has, $\mathrm{Ca}^{(2+)} /$ calcium (ion), channels ; 3 idea that only the postsynaptic , membrane / neurone, has (ACh) receptors ; 4 ACh broken down at postsynaptic membrane ;	1 max	IGNORE ref to refractory period (as not a feature of synapse) ACCEPT ACH / ach throughout 1 CREDIT knob / terminal bouton / bulb (instead of neurone) 2 3 DO NOT CREDIT ref to bouton / bulb / etc 4 IGNORE ref to (acetyl)cholinesterase without ref to action at postsynaptic membrane

Question			Expected Answers		Marks	Additional Guidance	
3	(a)	(i)				Mark the first answer for each letter. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = $\mathbf{0}$ marks	
			W	glycolysis;		\boldsymbol{W}	CREDIT glycolytic pathway ACCEPT phonetic spelling but must have 'glycol' IGNORE respiration
			X	Calvin cycle / light-independent stage (of photosynthesis) ;		X	IGNORE dark reaction / photosynthesis ACCEPT phonetic spelling
			Y	Krebs cycle ;	3	Y	ACCEPT citric acid cycle / TCA cycle / (tri)carboxylic acid cycle ACCEPT phonetic spelling IGNORE respiration / link reaction
3	(a)	(ii)	1	take place in different , parts / organelles, of the cell or compartmentalisation / reactions separated by membranes ;		1	Must be a clear statement and not implied from others. DO NOT CREDIT different parts of the leaf DO NOT CREDIT no interference between pathways (as rephrasing the Q)
			2	W / glycolysis, in cytoplasm ;		2	
			3	X / Calvin cycle , in , chloroplast / stroma (of chloroplast) ;		3	DO NOT CREDIT if thylakoid / membranes stated or implied
			4	Y / Krebs cycle , in , mitochondrion / matrix (of mitochondrion) ;		4	DO NOT CREDIT if cristae / membranes stated or implied
			5	AVP ;	3 max	5	eg - different enzymes for each pathway - different conditions for each pathway

Question			Expected Answers	Marks	Additional Guidance
3	(a)	(iii)	X; W and Y ;	2	IGNORE names. The question has asked for letters. photosynthesis Mark the first answer. If the answer is correct and an additional letter is given then $\mathbf{= 0}$ marks aerobic respiration Mark the first two answers. If these answers are correct and an additional letter (ie $3^{\text {rd }}$ etc) is given then $=$ 0 marks Both letters required for this mark, in any order.
3	(a)	(iv)	ATP / adenosine triphosphate ; water / $\mathrm{H}_{2} \mathrm{O}$; (oxidised) NAD / FAD ;	2	If any answer(s) incorrect then Max 1 IGNORE energy / heat IGNORE numbers eg oxygen (x) and ATP (\checkmark) and water $=\max 1$ oxygen (\times) and energy (ignore) $=0$ ATP (\checkmark) and energy (ignore) and $\mathrm{H}_{2} \mathrm{O}(\checkmark)=2$ reduced NAD (\times) and ATP (\checkmark) and energy (ignore) and $\mathrm{H}_{2} \mathrm{O}=\max 1$

Question			Expected Answers	Marks	Additional Guidance	
4	(d)	1	how ADH is dealt with as a protein in , liver / hepatocytes ;		1	DO NOT CREDIT if linked directly to excretion eg 'excreted by the liver'
		2	hydrolysis / acted on by protease;		2	'broken down' is not quite enough
		3	deamination / amine group removed / formation of ammonia / formation of NH_{3};		3	DO NOT CREDIT 'amine group deaminated'
		4	ornithine cycle / formation of urea / formation of $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$;		4	DO NOT CREDIT 'amino acid enters ornithine cycle'
		5	amino acids / keto acids , used in (named) metabolic pathway ;		5	eg - amino acids used for protein synthesis - keto acids used in , Krebs cycle / respiration - used in gluconeogenesis
		6	how ADH or urea is dealt with as a small molecule in kidney ;		6	
		7	(ultra)filtered from blood / moves from blood into nephron ;		7	
		8	(because) small molecule ;		8	
		9	urea not (all) reabsorbed / ADH not reabsorbed / (ADH or urea) present in urine ;		9	DO NOT CREDIT 'removed as urine’
		10	excreted;	3 max	10	DO NOT CREDIT if linked directly to the liver eg 'excreted by the liver'
			TOTAL	15		

Question				Expected Answers	Marks	Additional Guidance
5	(a)	(i)		messenger P / cyclic AMP / cyclic adenosine monophosphate ; essenger naline / adrenalin;	2	Mark the first answer on each prompt line. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = 0 marks ACCEPT CAMP / camp DO NOT CREDIT adenine monophosphate IGNORE chemicals not named in Fig. 5.1
5	(a)	(ii)	1 2 3	```glycogen \longrightarrow glucose / glycogenolysis; by hydrolysis; correct ref to protein kinase / glycogen phosphorylase kinase (activates glycogen phosphorylase) or glycogen phosphorylase (stimulates conversion of glycogen) or inhibition of glycogen synthase (preventing glucose conversion to glycogen) ;```	1 max	1 DO NOT CREDIT gluconeogenesis / glycogenesis 2 This term must be used, or a derived term. 3

Question		Expected Answers		Marks	Additional Guidance
5	(b)	1 2 3 4 5 6 7 8 9	adrenalin(e) increases, heart rate / stroke volume / cardiac output ; cardiovascular centre in medulla oblongata; idea of nervous connection to , SAN / sino-atrial node ; (which) controls frequency of waves of , excitation / depolarisation ; vagus / parasympathetic, nerve decreases heart rate ; accelerator / sympathetic, nerve increases heart rate ; high blood pressure detected by , stretch receptors / baroreceptors ; low blood pH / increased levels of blood CO_{2}, detected by chemoreceptors ; (receptors) in , aorta / carotid sinus / carotid arteries ;	4 max	2 ACCEPT 'cardiac' instead of cardiovascular but not for QWC 3 ACCEPT SAN for mp 3 but not for QWC 4 CREDIT in relation to mp 2 or mp 3 5 ONLY CREDIT vagus or parasympathetic for QWC 6 ONLY CREDIT accelerator or sympathetic for QWC ACCEPT phrenic nerve 7 DO NOT CREDIT proprioreceptor
			technical terms used appropriately with correct spelling ;	1	Correct use of adrenalin(e) (Identify using the tick $1 \boxed{\checkmark 1}$ AND MUST BE INCLUDED FOR QWC TO BE AWARDED) plus use of 2 terms from: cardiovascular centre, medulla oblongata, sino-atrial node, vagus or parasympathetic, carotid, accelerator or sympathetic, chemoreceptor You should use the GREEN DOT to identify the remaining QWC terms that you are crediting. Please insert a QWC symbol next to the PENCIL ICON, followed by a tick (\checkmark) if QWC has been awarded or a cross (x) if QWC has not been awarded
			TOTAL	10	

Question			Expected Answers	Marks	Additional Guidance
6	(c)				DO NOT CREDIT refs to controlling temperature or light or wind or time
		1	equal sample size for sun and shade leaves / increase sample size of shade leaves / greater numbers of sun and shade leaves;		1
		2	measure thickness of cuticle / make cuticle observations quantitative ;		2
		3	record range / calculate SD / calculate SE / (named) statistical analysis ;		3
		4	record data on leaf, length / width / area / colour / chlorophyll content ;		4
		5	record data on , size of stomata / stomatal count on upper surface ;		$5 \vdots$
		6	define what is a sun or shade leaf / measure light levels to classify type of leaf ;		6
		7	repeat / replicate , the (whole) experiment / using other plants of the same species ;	2 max	7 IGNORE ref to other species DO NOT CREDIT 'repeats' unqualified or implying the same individual plant
			TOTAL	6	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

