

Chapter 15 Electro	magnetism	Name: Class: Date:	
Time:	36 minutes		
Marks:	36 marks		
Comments:			

1

(a) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

There are two types of traditional transformer; step-up and step-down.

Describe the similarities and differences between a step-up transformer and a step-down transformer.

You should include details of:

oonon action, including materials acc	•	construction,	including	materials	used
---------------------------------------	---	---------------	-----------	-----------	------

•	the effect the	transformer	has on the	e input poten	tial difference	(p.d.).
---	----------------	-------------	------------	---------------	-----------------	---------

You should not draw a diagram.
Extra space

(b) The figure below shows a mobile phone and charger.

Mobile phone chargers use a different type of transformer, which is smaller and lighter than a traditional transformer.

	(Total 7 marks
	(1
Vhat name is given to the type of transformer used in a mobile phone charger?	•

2

3

An oscilloscope is connected to an alternating current (a.c.) supply. The diagram shows the trace produced on the oscilloscope screen.

Each horizontal division on the oscilloscope screen represents 0.002 s.

(a) C	Calculate the frequency of the alternating current supply.
S	Show clearly how you work out your answer and give the unit.
	Frequency =
(b) V	(3) What is the frequency of the a.c. mains electricity supply in the UK?
	(1) (Total 4 marks)
(a) [Describe the difference between an alternating current (a.c.) and a direct current (d.c.).

(2)

			nower = curren	ıt × potential diff	he current used t		
				rk out your ansv			
					Current	A	
	(ii)	Which one	of the following	g fuses should l	be used inside th	e plug of the steamer	?
		Draw a rin	g around your a	answer.			
		1 A	3 A	5 A	10 A	13 A	otal 5
						(10	Ulai 3
n th	ne UK	mains electi	ricity is a 230 vo	olt a.c. supply.		(10	otai 5
In th			-	olt a.c. supply.	city in the UK?	(10	olai 3
(a)	Wha	at is the freq	uency of the a.c	c. mains electric	sity in the UK?		otal 5
		at is the freq	-	c. mains electric	sity in the UK?		otal 3
(a)	Wha	at is the freq	uency of the a.c	c. mains electric	city in the UK?		otal 5
(a)	Wha	What is an	uency of the a.c	t? ween an a.c. (a) electricity supply an	
(a)	Wha	What is an	uency of the a.c	t? ween an a.c. (a			

)	Calculate the current drawn from the mains electricity supply by the shower.						
	Write down the equation you use, and then show clearly how you work out your answer.						
	Cu	rrent =	A				
i)	The table gives the maximum current that can safely pass through electric cables of						
,	different cross-sectional area.						
	Cross-sectional area in mm²	Maximum safe current in amps					
	1.0	11.5					
	2.5	20.0					
	4.0	27.0					
	6.0	34.0					
	10.0	46.0					
	16.0	62.0					
	The existing power sockets in the hou using 2.5 mm ² cable.	se are wired to the mains	electricity supply				
	Use the data in the table to explain when the data in the data in the table to explain when the data in the data		connected to the				
	mains electricity supply using 2.5 mm	² cable.					

	(iii)		it connecting the				/ must include a	
		Give two advantages of using a RCCB to protect a circuit rather than a fuse.						
		1						
		2						
							(Total	(2) 10 marks)
wire \	wrapp	ed around	a transformer wi one side of the cted to 5 turns w	iron core.			0 turns of insulated	1
(a)	What	type of tra	ansformer is sho	own in the d	liagram?			
	Draw a ring around the correct answer.							
		step	-down	ste	ep-up	switcl	h mode	
(b)	The treadi				 T		and the voltmeter	(1)
			p.d. of the	supply	Voltmet	er reading		

p.d. of the supply in volts	Voltmeter reading in volts
6.4	3.2
3.2	
	6.4

Complete the table. (i)

5

(2)

	(ii)	Transformers are used as part of the National Grid.	
		How are the values of p.d. in the table different to the values produced by the National Grid?	
			(1)
(c)		nsformers will work with an alternating current (a.c.) supply but will not work with a ct current (d.c.) supply.	
	(i)	Describe the difference between a.c. and d.c.	
			(2)
	(ii)	Explain how a transformer works.	(2)
			(4)
		(Total 10 ma	

Mark schemes

(a) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

0 marks

No relevant / correct content.

Level 1 (1-2 marks)

Either there is an attempt at a description of the construction of a transformer

or

a correct statement of the effect of one type of transformer on the input p.d.

Level 2 (3-4 marks)

There is a description of the construction of a transformer and

a correct statement of the effect of one type of transformer on the input p.d.

Level 3 (5-6 marks)

There is a clear description of the construction of a transformer and

there is a correct description of how transformers affect the input p.d.

details of construction:

extra information

a (laminated) core

core is made from a magnetic material / iron

2 coils

the coils are made from an electrical conductor / copper

the coils are covered in plastic / insulation

the coils are (usually) on opposite sides

step-up transformer has more turns on secondary coil than (its) primary (or vice versa)

step-down transformer has fewer turns on secondary coil than (its) primary (or vice versa)

effect on input p.d.:

step-up transformer, the output p.d. is greater (than the input p.d.) accept voltage for p.d.

step-down transformer, the output p.d. is lower (than the input p.d.)

(b) switch mode (transformer)

1

(a) 125

allow 1 mark for obtaining time period = 0.008 (s)

or

frequency = 1 / time period (or their calculated time period)

2

hertz
or
Hz

do not accept hz

1

(b) 50 (hertz)

2

3

[4]

(a) d.c. flows in (only) one direction

1

1

a.c. <u>changes</u> direction (twice every cycle)

accept a.c. constantly changing direction

ignore references to frequency

accept answers presented as a clear diagram
e.g.

ac:

1

	(b)	(i)	10		
			allow 1 mark for correct transformation and substitution i.e.		
			$\frac{2.3}{230}$ or $\frac{2300}{230}$ an answer 0.01 gains 1 mark	2	
		(ii)	13 A		
		()	e.c.f.		
			accept the fuse size that is the next listed value greater than answer (b)(i)	1	
				1	[5]
	(a)	50 h	ertz		
4	` ,			1	
	(b)	(i)	a flow of charge / electrons	1	
		(ii)	a.c. is constantly changing direction		
				1	
			whilst d.c. always flows in the same direction	1	
	(c)	(i)	46.9		
			accept 47.0 allow 1 mark for correct transformation and substitution		
			ie $\frac{10800}{230}$		
			<i>le</i> — 230		
				2	
		(ii)	current (46.9 A) exceeds maximum safe current for 2.5 mm ² cable		
			accept cable needs to be 16.0 mm ²		
				1	
			therefore if a 2.5 mm ² cable were used it would overheat / melt		
			cable needs to be 10.0 mm ² limits maximum credit to 1 mark	1	
		(iii)	can be reset	1	
			disconnects circuit faster (than a fuse)		
				1	[10]
5	(a)	step	-down		1
					1

(b)	(i)	1.6			
		correct order only			
			1		
		12.8			
			1		
	(ii)	values of p.d. are smaller than 230 V	1		
			1		
(c)	(i)	a.c. is constantly changing direction			
		accept a.c. flows in two / both directions			
		accept a.c. changes direction(s)			
		a.c. travels in different directions is insufficient	_		
			1		
		d.c. flows in one direction only			
			1		
	(ii)	an alternating current / p.d. in the primary creates a changing / alternating			
		magnetic field			
			1		
		(magnetic field) in the (iron) core			
		current in the core negates this mark			
		accept voltage for p.d.			
			1		
		(and so) an alternating p.d.			
			1		
		(p.d.) is induced across secondary coil			
		,	1		
				[10]	