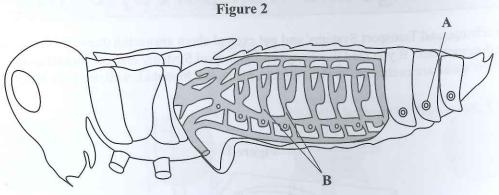

Exchange and Transport Systems — 1


If you read 'Exchange and Transport Systems' and got excited about answering questions on the rail network, prepare to be disappointed. If you read 'Exchange and Transport Systems' and got excited about answering questions on how gases are exchanged in fish, insects, plants and humans... well, it's your lucky day.

1 Figure 1 shows a gill filament of a fish.

1.1	Name structure A on Figure 1.	
	(1	mark)
1.2	Draw an arrow on structure A to show the direction of blood flow. (1	mark)
1.3	Label structure $\bf A$ to show where the highest and lowest concentrations of oxygen are found in the blo $\bf (1$	ood. mark)
1.4	Explain one way in which the structure of the gill filament is adapted to its function.	
	(2 n	narks)
2	A student dissected a grasshopper. As part of the dissection, she removed a piece of the grasshopper's exoskeleton.	340
2.1	Suggest a tool that the student could have used to cut through the exoskeleton.	
	(1)	mark)

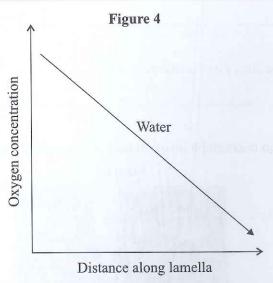
Figure 2 shows a diagram of the grasshopper's gas exchange system.

	\mathcal{L}	
2.2	Identify the structures labelled A and B in Figure 2.	
	A	196 Vinc
	B	 s)
2.3	The student wants to examine the structures labelled B more closely, with the use of a temporary mount. A stain is not needed to view these structures. Using this information, describe how the student would prepare the mount.	

	(3 marl	 KS)
2.4	In insects, the need for efficient gas exchange can conflict with the need to limit water loss. Give two ways that the grasshopper is adapted to limit water loss.	
	1	
	2	ks)
	A student investigated the stomatal density of a non-xerophytic plant's leaves. She studied ten samples of the same plant.	of
3	A student investigated the stomatal density of a non-xerophytic plants fearest leaves of the same plant. lower epidermis under a microscope. The samples were taken from different leaves of the same plant.	

Table 1 shows the number of stomata the student counted within the microscope's field of view for each sample. The field of view measured 0.025 mm² in each case.

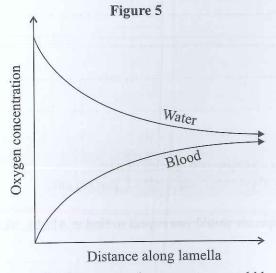
Table 1


					San	nple				
-11	1	2	3	4	5	6	7	8	9	10
	1	4	7	1	2	8	5	5	3	4
Number of stomata	5	6	7	4	3	0				

3.1 Using **Table 1** and the information provided, estimate the number of stomata you would expect to find on a leaf with a surface area of 150 mm². Show your working.

Number of stomata:	
	(2 marks)

3.2	stomata present on the leaf.
	1
	2
	(2 marks)
3.3	Name the cells that are the site of gas exchange in a leaf.
	(1 mark)
	Figure 3 shows an electron micrograph image of part of a xerophyte leaf.
	Figure 3 epidermis
	Remember, a xerophyte is a = plant that is adapted to life in = warm, dry or windy habitats. =
3.4	Describe and explain the xerophytic adaptation shown in Figure 3.
	(3 marks)
la .	Lepus capensis and Lepus othus are two species of hare. Lepus othus has relatively short ears compared to Lepus capensis.
4.1	Which of these two hare species would you expect to find in Alaska, where the climate is cold? Explain your answer.
	(3 marks)
4.2	Alaskan hares are hunted by larger mammals, such as polar bears. Explain how you would expect the metabolic rate of an Alaskan hare to differ from the metabolic rate of a polar bear.
	(3 marks)


5 Sharks exchange oxygen across their gill lamellae using a counter-current gas exchange system. **Figure 4** shows how the relative oxygen concentration of water changes with distance along a shark's lamella.

5.1 On Figure 4, sketch the relative oxygen concentration of the blood flowing through the lamella.

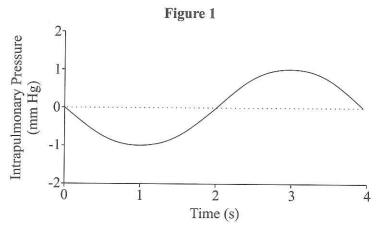
(1 mark)

Figure 5 shows how the relative oxygen concentrations of water and blood would change with distance along a shark's lamella if gas exchange took place via a parallel flow system.

5.2	Use Figure 5 to explain why a parallel flow gas exchange system would be less efficient than a counter-current gas exchange system.				

	(3 ma	 rks)			

Make sure your working is clear in calculation questions that are worth multiple marks. Even if you get the final answer wrong, you could pick up some marks from your working — but only if the marker can tell what you were trying to do and where you got your numbers from.


Exchange and Transport Systems — 2

Bacterium A has a surface area to volume ratio of 5:1. Bacterium B has a surface area to volume ratio of 84:22. Bacterium C has a surface area of $15.75 \, \mu\text{m}^2$ and a volume of $3.5 \, \mu\text{m}^3$.

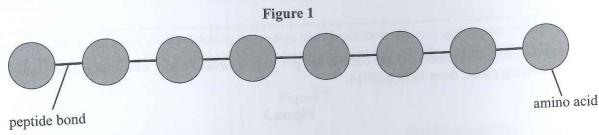
Use the information above to determine which **one** of the bacteria (A, B or C) is likely to be able to carry out gas exchange at the fastest rate. Show your working.

Bacterium:(2 marks)

Intrapulmonary pressure is the pressure inside the lungs.Figure 1 shows how intrapulmonary pressure changes during breathing.

2.1	Name two muscles that contract when a person inspires.	
	1	
	2	
		(2 marks)
2.2	State the time period in Figure 1 during which air is being taken into the lungs. Explain your answer.	
		(3 marks)
2.3	State the time in Figure 1 at which the lung volume is at its smallest.	
		(1 mark)

3	Emphysema is a lung disease that leads to the breakdown of the alveoli walls.					
3.1	Give two ways that healthy alveoli are adapted for gas exchange.					
	1					
	2					
	(2 marks)					
	Flow-volume loops show air flow during expiration and inspiration, plotted against the volume of air in the lungs. Figure 2 shows a flow-volume loop for a healthy person and one for a patient with emphysema.					
	Figure 2					
	Healthy person Emphysema patient					
	Expiration					
	(S/ _{Expiration} (S/ _S) (M) (S/ _S) (Expiration (S/ _S) (M) (M) (S/ _S) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M					
	Flow					
	Volume (dm³) Volume (dm³)					
	Inspiration					
	Garage and the state of the second se					
3.2	Suggest why the inspiration section of the emphysema patient's flow-volume loop is similar to that of the healthy person's, but the expiration section of the loop is not.					
	(3 marks)					
3.3	The pulmonary ventilation rate (PVR) is the volume of air inspired or expired in one minute. A patient has a PVR of 7.60 dm ³ minute ⁻¹ and takes 16 breaths per minute. Calculate the volume of air in each breath in cm ³ .					
	3					
	cm ³ (2 marks)					


4	Asbestos is a fibrous material that was commonly used in construction work in Britain until it banned in 1999. Long-term exposure to asbestos fibres can lead to a lung condition called as	was bestosis.
	Asbestosis involves the build up of inelastic scar tissue in the lungs.	
4.1	Suggest why people with asbestosis may have a faster ventilation rate than normal.	
		(2 marks)
	Figure 3 shows the number of death certificates per year in Great Britain, which identified as the underlying cause, from 1978 to 2014.	62 / 62
	Figure 3	
Death certificates with asbestosis as underlying cause	250	
Death certificates with stosis as underlying ca	150-	
th certi is as un	100-	
Dear sbestos	50	
ä	197 198 198 198 198 198 198 198 199 199 199	2010 2011 2012 2013 2013
	Year Ban introduced	
4.2	A student concludes from Figure 3 that the asbestos ban has been unsuccessful at protecting p against asbestosis. Evaluate this conclusion.	eople

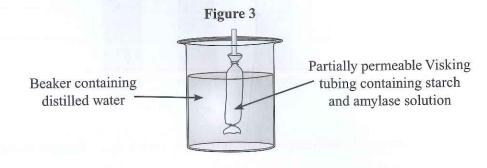
		••••••
		(4 marks)
EXAN	If you're asked to evaluate something, you need to make a judgement based on the evidence	Score
TIP	you've been given. Make sure you consider both sides of the argument in your answer — think about all the possible factors that might have affected the data you're looking at.	21

More Exchange and Transport Systems — 1

That's right — you're not done with exchange and transport systems just yet. Here's another great big section full of questions about them. You can't exchange them for something nicer, I'm afraid — get cracking.

1 Trypsin is an endopeptidase. It breaks down proteins into smaller peptides.

Figure 1 shows a protein.


	peptide bond	amino acid
1.1	On Figure 1, draw an arrow to indicate one place where trypsin could cleave the protein.	(1 mark)
1.2	In addition to endopeptidases, there are two other types of enzymes that digest proteins. Name these enzymes and describe how they work.	
	Name:	
	Function: Name:	
	Function:	(4 marks)
1.3	The amino acids released by protein digestion are absorbed by the ileum epithelial cells. Explain how these amino acids are absorbed.	
		(5 marks)

1.4	The role of enteropeptidase is t	roduced by the cells lining the small intestine when food is ingested. convert trypsinogen, an inactive enzyme, into trypsin, its active form. needed to make enteropeptidase can cause enteropeptidase deficiency,
	Explain why enteropeptidase de	ficiency could be life-threatening.
		(3 marks)
2	Scientists investigated the break oils by Lipase A in the small int	down of different types of commonly used estine. The results can be seen in Figure 2 .
		Figure 2
	Lipase A Activity	18
	(unit/gram dry substrate)	8 - 6 - 4 - 2
		Type A Type B Type C
		Type of oil
2.1	Lipase A is more effective at hyd	rolysing oil Type B than oil types A or C. Suggest an explanation for this.
		(2 marks)

22	Calculate the ratio	of Lipase A activi	y for oil	s Type B	: Туре	C, shown	in Figure 2.
----	---------------------	--------------------	-----------	----------	--------	----------	--------------

		Ratio:	: 1 (1 mark)
2.3	Name one substance other than lipase that aids lipid digestion.		
			(1 mark)
2.4	Give two substances that lipids are hydrolysed into.		
	2		(2 marks)
2.5	Describe how the products of lipid digestion are absorbed into	the ileum epithelial cells	s.
			(3 marks

Figure 3 shows a model gut set up by a student to investigate the digestion and absorption of starch.

		(1 mark)
3.1	Describe how the student would set up a control for this investigation.	

	9			
2			***************************************	
2				••••••
				(2 ma
				(2 ma
The	contents of the Visking tubing and the beaker wer	e tested with iodine ar	nd Benedict's reag	ent at the
of the	e experiment, and after they had been left for 20 r	minutes. Table 1 show	vs the results of the	ese tests.
Table 1				
	,	Iodine test result	Benedict's	
	Visking tubing contents at start	Positive	test result Negative	
	Beaker contents at start	Negative	Negative	-
	Visking tubing contents after 20 minutes	Negative	Positive	
	Beaker contents after 20 minutes	Negative	Positive	
				(4
				(4 mar
Expla	in the Benedict's test results.			
•••••				
		······································		
				(4 mar
				(4 mar
	Often maths questions look more complicated than t	:hey actually are, becaus		(4 mar