
P2 Chapter 1: Electricity and magnetism

1.5 Resistance

Learning objectives

After this topic you will be able to

- describe what is meant by resistance
- calculate the resistance of a component and of a circuit
- describe the difference between conductors and insulators in terms of resistance.

▲ The currents in these circuits are different, even though the cells are the same.

▲ You can use an ammeter and a voltmeter to find the resistance of a lamp

What's the resistance?

A bulb in a circuit has a current of 0.6 A through it and a potential difference of 12 V across it.

Calculate the resistance of the bulb.

The current in the wires connected to a television is much smaller than the current in the wires to a microwave.

The reason for this is to do with resistance.

 Electrical devices have different currents through

Different components, different currentComponents do different jobs in an electric circuit.

Each circuit component has a different **resistance**. This tells you how easy or difficult it is for the charges to pass through the component. Resistance is measured in **ohms**, which has the symbol Ω . Ω is a letter from the Greek alphabet.

The current depends on the push of the battery and also the resistance of the component. You can calculate the current using this equation:

current (A) =
$$\underline{\text{potential difference (V)}}$$

resistance (Ω)

You can use the idea of resistance to explain why the current decreases as you add more bulbs in a series circuit. Adding more bulbs increases the resistance, so the current is less.

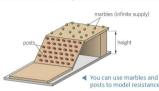
A State what is meant by resistance.

Measuring resistance

You can use an equation to calculate the resistance of a component. Here is the equation to calculate resistance:

 $resistance (\Omega) = \underbrace{potential\ difference\ (V)}_{current\ (A)}$

B State the unit of resistance.


For example, if you found that the current through a bulb was 0.2 A when the voltage across it was $6\,V$, you could work out the resistance:

resistance = potential difference current = 6 V

0.2 A = 30 Ω

What happens inside a wire?

You can use a model with marbles to show what happens inside a wire when a current flows. The charges that move in a wire are electrons.

The marbles behave like electrons. As they fall down the slope they collide with the posts. Inside a wire the moving electrons collide with the atoms of the wire. They transfer energy, and the wire gets hot.

Conductors and insulators

Metals are good **conductors**. They have a very low resistance because they contain lots of electrons that can move. The resistance of a 10-m piece of copper wire is about 0.2 Ω .

Other materials such as plastics do not have many electrons that are free to move. The resistance of plastic objects is very high, over a thousand million million ohms. The air is usually an insulator but it can conduct if the potential difference is big enough. Insulators have a high resistance.

 A spark happens when the air conducts electricity.

Fantastic Fact

Many people think that Thomas Edison invented the lightbulb. What he invented was the first lightbulb with a filament that didn't burn out when a current flowed in it.

Key Words

resistance, ohms, conductor, insulator

Summary Ouestions

1 A Copy and complete the sentences below.

The current in a circuit depends on the ___ and the ___ . The current will be bigger if the ___ . In sisted a metal wire __ collide with atoms and transfer ___ to them. __ are materials that contain lots of charges that are free to move. ___ contain fewer charges that can move.

(7 marks)

2 In the circuit diagrams on the opposite page the cell has a potential difference of 3 V. Calculate the resistance of the motor and the lamp.

(4 mark

3 A A Compare the resistance of conductors and insulators.

(6 marks)

Resources